Monkey hand postural synergies during reach-to-grasp in the absence of vision of the hand and object.
نویسندگان
چکیده
Understanding how the CNS controls reach-to-grasp will require behavioral and neurophysiological studies of reach-to-grasp in the monkey, including the evaluation of whole-hand grasp with explicit force requirements. In this study, monkeys performed a reach-to-grasp task in which the size, shape, and orientation of the objects were varied. The monkeys were required to grasp each object at five force levels based on visual feedback. Seventeen positions on the wrist and hand were monitored to quantify kinematics. Hand shaping began with initiation of reach and continued throughout the reach, matching object properties even without vision of the hand or object. Grasp aperture scaled to object size. Singular value decomposition analysis of the marker positions identified two dominant hand postures. The first eigenvector or "eigenposture" consisted of an open hand configuration midway between flexion and extension that explained >93% of the variance. The second eigenposture consisted of hyperextension of all joints that accounted for another 4-5% of the variance. The two eigenpostures were similar across force levels and between monkeys. Reach kinematics consisted of a U-shaped hand path with a bell-shaped velocity profile. Trajectory and speed were independent of grasp force and object properties. In summary, hand shaping during the reach occurred without vision of the hand or object, and hand kinematics were not dependent on grasp force. Furthermore, the reach was independent of grasp force and object properties. These observations imply that the kinematics of reach-to-grasp and grasp force are controlled independently. Similar to humans, monkeys may use a simplifying strategy to reduce the degrees of freedom of the hand during reach-to-grasp.
منابع مشابه
Experimental evaluation of the UB Hand IV postural synergies
In this paper, the postural synergies configuration subspace given by the fundamental eigengrasps of the UB Hand IV (University of Bologna Hand, version IV) is derived through experiments. This study is based on the kinematic structure of the robotic hand and on the taxonomy of the grasps of common objects. Experimental results show that it is possible to obtain grasp synthesis for a large set ...
متن کاملHand synergies during reach-to-grasp.
An emerging viewpoint is that the CNS uses synergies to simplify the control of the hand. Previous work has shown that static hand postures for mimed grasps can be described by a few principal components in which the higher order components explained only a small fraction of the variance yet provided meaningful information. Extending that earlier work, this study addressed whether the entire ac...
متن کاملPurkinje cells signal hand shape and grasp force during reach-to-grasp in the monkey.
The cerebellar cortex and nuclei play important roles in the learning, planning, and execution of reach-to-grasp and prehensile movements. However, few studies have investigated the signals carried by cerebellar neurons during reach-to-grasp, particularly signals relating to target object properties, hand shape, and grasp force. In this study, the simple spike discharge of 77 Purkinje cells was...
متن کاملThe Grasping Side of Odours
BACKGROUND Research on multisensory integration during natural tasks such as reach-to-grasp is still in its infancy. Crossmodal links between vision, proprioception and audition have been identified, but how olfaction contributes to plan and control reach-to-grasp movements has not been decisively shown. We used kinematics to explicitly test the influence of olfactory stimuli on reach-to-grasp ...
متن کاملHand Grasping Synergies As Biometrics
Recently, the need for more secure identity verification systems has driven researchers to explore other sources of biometrics. This includes iris patterns, palm print, hand geometry, facial recognition, and movement patterns (hand motion, gait, and eye movements). Identity verification systems may benefit from the complexity of human movement that integrates multiple levels of control (neural,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 91 6 شماره
صفحات -
تاریخ انتشار 2004